
© NVIDIA Corporation 2006

CascadesCascades
by NVIDIAby NVIDIA

Ryan GeissRyan Geiss
Michael ThompsonMichael Thompson

© NVIDIA Corporation 2006

Cascades

About the demo

Waterfalls flowing over procedural rock built on
GPU

Runs on Windows Vista, DirectX 10
Heavily Utilizes:

Geometry Shaders
Stream Out
Render to 3D Texture
Pixel Shaders

CPU virtually idle, even when
generating new slices of rock. Demo

© NVIDIA Corporation 2006

Cascades

What’s the GPU doing here?

• Building complex procedural rock
structures.

• Managing dynamic water particle system &
physics (collisions with rock).

• Swarm of dragonflies buzzes around,
avoiding the rock.

• Heavy-duty pixel shaders.

© NVIDIA Corporation 2006

Main Topics to Cover

1. Rock Generation
2. Rock Rendering
3. Water (Particle System, Rendering)
4. Swarming Bugs

Rock Generation

© NVIDIA Corporation 2006

Building the Rock: Overview

Step 1: Render to slices of a 3D texture
Render a “density” value into each voxel.
(+) values will become rock, (–) values, air.

Step 2: Precompute some lighting info.
Compute normals
Cast occlusion rays

Step 3: Generate & store polygons
Use ‘Marching Cubes’ algorithm on each cell.

(…all on the GPU.)

© NVIDIA Corporation 2006

Building the Rock

Step 1: Render to 3D (volume) texture
3D Texture:

Format: DXGI_FORMAT_R16_FLOAT (one 16-bit float)
Size: 96 x 96 x 256
Memory: < 5 MB
Contents: Density values (positive ~ rock, negative ~ air)

To generate slices of rock, we render “fullscreen
quads” to 2D slices of the 3D texture.

Heavy pixel shader math to figure out the density
value at each pixel (voxel). (160 instructions)

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Building the Rock

Add several base shapes together:
1. Three roaming vertical pillars (cylinders) (+)
2. One negative pillar, to create open space

in the center (–)
3. Shelves – a function of the Y coordinate only;

periodically creates a shelf of rock. (+)
4. Helix – biases half of the space toward rock, half

toward air. (+/–)
5. Noise – four octaves of random noise

sampled from small 3D textures (+/–)

© NVIDIA Corporation 2006

Looking at a Y-slice
of rock:

(…value starts at
zero everywhere.)

float f = 0;

Add a pillar:

(…pillar center
roams in XZ plane
from slice to slice;
stored in a
constant buffer.)

f += 1 / length(ws.xz – pillar.xy) - 1;

3-pillar version:

for k = 0,1,2
f += 1 / length(ws.xz – pillar[k].xy) - 1;

Add negative values
going down
the center:

(water flow
channel)

f -= 1 / length(ws.xz) - 1;

Add strong
negative values
at outer edge.

Keeps solid rock
“in bounds”.

f = f – pow(length(ws.xz), 3);

Helix:

Add + and – values
on opposite sides.

Rotate the values
as the slice’s Y coord
changes.

float2 vec = float2(cos(ws.y), sin(ws.y));
f += dot(vec, ws.xz);

Shelves:

Periodically add
positive values
based on slice’s
Y coord.

f += cos(ws.y);

© NVIDIA Corporation 2006

Building the Rock

Next, add Noise for a more natural look.

In 1D case, create noise by adding several
octaves of random signals.

Signal at each octave has:
half the amplitude
~twice the frequency

of the previous octave.

© NVIDIA Corporation 2006

Add all of the above & you get… a mountain:

© NVIDIA Corporation 2006

Building the Rock

1D noise ~ mountain silhouette.
2D noise ~ terrain height map.
3D noise ~ a bunch of +/– values in 3D
space.
When added to the simpler basis functions
(cylinder, helix, etc) they add nice fractal
detail to our rock’s shape.

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Building the Rock

Noise on the GPU:
Each octave is a 3D texture of random floats.
Size: 16 x 16 x 16
Range: [-1..1]

Sample 4 octaves & sum the results.

© NVIDIA Corporation 2006

To avoid visual repetition:
Avoid lacunarity of exactly 2.0.
Randomly rotate input to each octave.

(each octave has own 3x3 rotation matrix)
Translation not necessary.

© NVIDIA Corporation 2006

Building the Rock

Advantages of noise-based geometry:
Yields visually rich & non-repeating “terrain”
Every little bit of geometry preserved.
Save your favorites.
Preset files (scenes) use only 3 kilobytes.

© NVIDIA Corporation 2006

Normals & Occlusion

Step 2: Precompute lighting information.

Render to slices of a second 3D texture.
This one will store lighting info.

Use first 3D Texture (densities) to compute
normal vector and ambient occlusion factor.

Store both in a rgba8 volume texture
.xyz normal (packed)
.w occlusion

© NVIDIA Corporation 2006

Normals & Occlusion

Normal vector is simply the gradient of
the density values.

float3 ComputeNormal(Texture3D tex, SamplerState s,
float3 uvw) {

float4 step = float4(inv_voxelDim, 0);
float3 gradient = float3(

tex.SampleLevel(s, uvw + step.xww, 0)
- tex.SampleLevel(s, uvw - step.xww, 0),

tex.SampleLevel(s, uvw + step.wwy, 0)
- tex.SampleLevel(s, uvw - step.wwy, 0),

tex.SampleLevel(s, uvw + step.wzw, 0)
- tex.SampleLevel(s, uvw - step.wzw, 0)

);
return normalize(-gradient);

}

© NVIDIA Corporation 2006

Normals & Occlusion

Ambient occlusion
factor tells us, at any
point, what % of
random rays cast out
would hit the rock (vs.
escaping into the
environment).

Used to shade the
rock, so recesses
appear darker.

© NVIDIA Corporation 2006

Normals & Occlusion

Occlusion factor generated by casting 32
rays, testing for collisions with the rock.

Sample the densities at each point along ray;
‘collision’ when a positive density is found.
The 32 rays are in a 3D poisson distribution.
Take 16 samples per ray.
Distance-wise, march through 20% of the width.

© NVIDIA Corporation 2006

Normals & Occlusion

Why do we need lighting data everywhere?
Why not just per vertex?

Knowing occlusion data lets us light anything in the
rock volume.

Dragonflies
Water
Vines (easter egg – see args.txt)

Normals speed up water flow & vine-crawl
calculations.

© NVIDIA Corporation 2006

Generating Polygons

Step 3: Generate polygons via Marching Cubes

Constructs a polygonal surface where
densities equal zero.
Works on one voxel (cell) at a time.

INPUT: the density at each of the 8 corners
8 corners “in”/”out” 256 possible cases (28)

OUTPUT: 0 to 5 polygons

(Note: patent expired; free to use)

© NVIDIA Corporation 2006

Generating Polygons

To generate a slice of rock:

“Draw” dummy vertex buffer of 96x96 points
Points have uv coords in [0..1] range.

Pipeline: VS GS VB
Pixel shader disabled

Vertex Shader:
Samples densities at 8 corners
Determines the MC case
Passes this data on to GS

© NVIDIA Corporation 2006

Geometry Shader uses:
Dynamic Indexing
Lookup Tables (constant buffers)
Dynamic Branching
Stream Output (variable # of primitives)

…to generate polygons.

Output primitive type: Triangle List
Appends 0, 3, 6, 9, 12, or 15 vertices to
a VB.

© NVIDIA Corporation 2006

Generating Polygons

More on the Geometry Shader (GS):
Heavy use of lookup tables
One translates case # of polygons to output
One tells you which cell edges to place the 3 verts
on, for each triangle emitted.
Resulting vertices (a triangle list) are streamed out
to a vertex buffer (VB).
We used one VB for every 12 slices (voxel layers) of
the rock.*
VB’s are created at startup and never resized.

Memory footprint: we needed about 22 bytes of video
memory for each voxel in the VB.

© NVIDIA Corporation 2006

Generating Polygons

Notes on coordinate spaces:
In world space…

…+Y is up, although in the 3D texture, that’s +Z.
(you can render to Z slices of a volume; but not to X or Y
slices)

…the rock spans [-1..1] in X and Z and can roam on Y.
…the rock bounding box size is 2.0 in X and Z, and 5.333
in Y. (2.0 * 256/96)

In UVW (3D texture) space…
Coordinates range from [0..1] in x, y, z.
“slices” are along Z (not Y!).

Texels in the 3D texture correspond to cell
corners. If a texture slice is 96x96, then there are
95x95 cells (or voxels).

© NVIDIA Corporation 2006

Generating Polygons

Some handy global constants:
float WorldSpaceVolumeHeight = 2.0*(256/96.0);
float3 voxelDim = float3(96, 256, 96);
float3 voxelDimMinusOne = float3(95, 256, 95);
float3 wsVoxelSize = 2.0/95.0;
float4 inv_voxelDim = float4(1.0/voxelDim, 0);
float4 inv_voxelDimMinusOne

= float4(1.0/voxelDimMinusOne, 0);

© NVIDIA Corporation 2006

Generating Polygons

Most of this is easily borrowed from the
demo…

1. Generate your own density values
2. Copy our 3 shaders for getting normals /

occlusion.
3. Copy our 2 shaders for rock generation.
4. Also grab contents of a few constant

buffers – see models\sceneBS.nma
(or see notes this slide).

© NVIDIA Corporation 2006

Marching Cubes Vertex Shader [1]
// This vertex shader is fed 95*95 points, one for each *cell* we'll run M.C. on.
// To generate > 1 slice in a single frame, we call DrawInstanced(N),
// and it repeats it N times, each time setting nInstanceID to [0 .. N-1].

// per-vertex input attributes: [never change]
struct vertexInput {

float2 uv : POSITION; // 0..1 range
uint nInstanceID : SV_InstanceID;

};

struct vsOutputGsInput { // per-vertex outputs:
float3 wsCoord : POSITION; // coords for LOWER-LEFT corner of the cell
float3 uvw : TEX;
float4 f0123 : TEX1; // the density values
float4 f4567 : TEX2; // at the 8 cell corners
uint mc_case : TEX3; // 0-255

};

Texture3D tex; // our volume of density values. (+=rock, -=air)
SamplerState s; // trilinear interpolation; clamps on XY, wraps on Z.

cbuffer SliceInfos {
// Updated each frame. To generate 5 slices this frame,
// app has to put their world-space Y coords in slots [0..4] here.
float slice_world_space_Y_coord[256];

}

// converts a point in world space to 3D texture space (for sampling the 3D texture):
#define WS_to_UVW(ws) (float3(ws.xz*0.5+0.5, ws.y*WorldSpaceVolumeHeight).xzy)

© NVIDIA Corporation 2006

Marching Cubes Vertex Shader [2]

v2gConnector main(vertexInput vtx)
{

// get world-space coordinates & UVW coords of lower-left corner of this cell
float3 wsCoord;
wsCoord.xz = vtx.uv.xy*2-1;
wsCoord.y = slice_world_space_Y_coord[vtx.nInstanceID];
float3 uvw = WS_to_UVW(wsCoord);

// sample the 3D texture to get the density values at the 8 corners
float2 step = float2(worldSpaceVoxelSize, 0);
float4 f0123 = float4(tex.SampleLevel(s, uvw + step.yyy, 0).x,

tex.SampleLevel(s, uvw + step.yyx, 0).x,
tex.SampleLevel(s, uvw + step.xyx, 0).x,
tex.SampleLevel(s, uvw + step.xyy, 0).x);

float4 f4567 = float4(tex.SampleLevel(s, uvw + step.yxy, 0).x,
tex.SampleLevel(s, uvw + step.yxx, 0).x,
tex.SampleLevel(s, uvw + step.xxx, 0).x,
tex.SampleLevel(s, uvw + step.xxy, 0).x);

// determine which of the 256 marching cubes cases we have for this cell:
uint4 n0123 = (uint4)saturate(f0123*99999);
uint4 n4567 = (uint4)saturate(f4567*99999);
uint mc_case = (n0123.x) | (n0123.y << 1) | (n0123.z << 2) | (n0123.w << 3)

| (n4567.x << 4) | (n4567.y << 5) | (n4567.z << 6) | (n4567.w << 7);

...
// fill out return struct using these values, then on to the Geometry Shader.

}

© NVIDIA Corporation 2006

Marching Cubes Vertex Shader

// sample the iso-value at the 8 corners
float2 step = float2(worldSpaceVoxelSize, 0);
float4 f0123 = float4(tex.SampleLevel(s, uvw + step.yyy, 0).x,

tex.SampleLevel(s, uvw + step.yyx, 0).x,
tex.SampleLevel(s, uvw + step.xyx, 0).x,
tex.SampleLevel(s, uvw + step.xyy, 0).x);

float4 f4567 = float4(tex.SampleLevel(s, uvw + step.yxy, 0).x,
tex.SampleLevel(s, uvw + step.yxx, 0).x,
tex.SampleLevel(s, uvw + step.xxx, 0).x,
tex.SampleLevel(s, uvw + step.xxy, 0).x);

// determine which of the 256 marching cubes cases for this cell:
uint4 n0123 = (uint4)saturate(f0123 * 99999);
uint4 n4567 = (uint4)saturate(f4567 * 99999);
uint mc_case = (n0123.x) | (n4567.x << 4)

| (n0123.y << 1) | (n4567.y << 5)
| (n0123.z << 2) | (n4567.z << 6)
| (n0123.w << 3) | (n4567.w << 7);

© NVIDIA Corporation 2006

Marching Cubes Geom. Shader

// GEOMETRY SHADER INPUTS:

struct vsOutputGsInput {
float4 wsCoord : POSITION;
float3 uvw : TEX;
float4 f0123 : TEX1; // the density values
float4 f4567 : TEX2; // at the corners
uint mc_case : TEX3; // 0-255

};

struct GSOutput {
// Stream out to a VB & save for reuse!
// .xyz = wsCoord, .w = occlusion
float4 wsCoord_Ambo : POSITION;
float3 wsNormal : NORMAL;

};

// our volume of density values.
Texture3D tex;

// .xyz = low-quality normal; .w = occlusion
Texture3D grad_ambo_tex;

// trilinear interp; clamps on XY, wraps on Z.
SamplerState s;

cbuffer g_mc_lut1 {
uint

case_to_numpolys[256];
float4 cornerAmask0123[12];
float4 cornerAmask4567[12];
float4 cornerBmask0123[12];
float4 cornerBmask4567[12];
float3 vec_start[12];
float3 vec_dir [12];

};

cbuffer g_mc_lut2 {
int4 g_triTable[1280];

//5*256
};

© NVIDIA Corporation 2006

[maxvertexcount (15)]
void main(inout TriangleStream<GSOutput> Stream,

point vsOutputGsInput input[1])
{
GSOutput output;
uint num_polys = case_to_numpolys[input[0].mc_case];
uint table_pos = mc_case*5;
for (uint p=0; p<num_polys; p++) {
int4 polydata = g_triTable[table_pos++];
output = PlaceVertOnEdge(input[0], polydata.x);
Stream.Append(output);
output = PlaceVertOnEdge(input[0], polydata.y);
Stream.Append(output);
output = PlaceVertOnEdge(input[0], polydata.z);
Stream.Append(output);
Stream.RestartStrip();

}
}

Marching Cubes Geom. Shader

© NVIDIA Corporation 2006

GSOutput PlaceVertOnEdge(vsOutputGsInput input, int edgeNum)
{
// Along this cell edge, where does the density value hit zero?
float str0 = dot(cornerAmask0123[edgeNum], input.field0123) +

dot(cornerAmask4567[edgeNum], input.field4567);
float str1 = dot(cornerBmask0123[edgeNum], input.field0123) +

dot(cornerBmask4567[edgeNum], input.field4567);
float t = saturate(str0/(str0 - str1)); //0..1

// use that to get wsCoord and uvw coords
float3 pos_within_cell = vec_start[edgeNum]

+ t * vec_dir[edgeNum]; //[0..1]
float3 wsCoord = input.wsCoord.xyz

+ pos_within_cell.xyz * wsVoxelSize;
float3 uvw = input.uvw + (pos_within_cell *

inv_voxelDimMinusOne).xzy;

GSOutput output;
output.wsCoord_Ambo.xyz = wsCoord;
output.wsCoord_Ambo.w = grad_ambo_tex.SampleLevel(s, uvw, 0).w;
output.wsNormal = ComputeNormal(tex, s, uvw);
return output;

}

Marching Cubes Geom. Shader

“Floaters”: annoying
chunks of levitating rock.

When generating 2D
height maps from noise,
you get small islands – no
problem.

In 3D, you get floating
rocks…

© NVIDIA Corporation 2006

Floaters

Difficult to reliably kill polygons on small
floaters.

How does an ant
know if he’s on a
1 meter3 rock or a
10 meter3 rock?

© NVIDIA Corporation 2006

Floaters

The Floater Test: for each voxel in which we
generate polygons…

Cast out a bunch of rays.
Track longest distance a ray could go without
exiting the rock.
Gives a good estimate of the size of the rock.

If “parent rock” small, don’t generate
polygons for this voxel.

Fast dynamic branching very helpful.

Second pass can help too. (See notes)

Shading

© NVIDIA Corporation 2006

Shading

Rock rendered in one pass with one
big pixel shader
398 instructions, not counting loops.
Shading topics to cover:

Texture coordinate generation
Lighting
‘Wet Rock’ effects
Detail maps
Displacement Mapping

© NVIDIA Corporation 2006

Texture Coordinate Woes

Texture mapping: UV Layout

Games: models have manually-created UV
layouts for texture mapping.
No good for procedural geometry with
arbitrary topology.

© NVIDIA Corporation 2006

Planar projection along one axis:

© NVIDIA Corporation 2006

Tri-Planar Texturing

Solution: Tri-Planar Texturing

Project 3 different (repeating) 2D textures
along X, Y, and Z axes; blend between them
based on surface normal.

For surface points facing mostly in +X or –X,
use the YZ projection… etc.

Minimizes stretching / streaking.

Deliberately
Bad Example

© NVIDIA Corporation 2006

Tri-planar Texturing

For each pixel:

1. For each projection (X, Y, Z):
a. project (convert wsCoord to UV coord)
b. determine surface color & normal based on that
projection

2. Blend between the 3 colors & normals based on the
original (unbumped / vertex) normal.
[next slide]

© NVIDIA Corporation 2006

Blending the 3 together…

Blending amount based on abs(normal),
but blend ‘zone’ is narrowed via a scale &
bias.

float3 blend_weights = abs(N_orig) - 0.2;
blend_weights *= 7;
blend_weights = pow(blend_weights, 3);
blend_weights = max(0, blend_weights);
// and so they sum to 1.0:
blend_weights /= dot(blend_weights, 1);

© NVIDIA Corporation 2006

Low-frequency Color Noise

Repeating textures can get dull…
Reduce monotony by sampling a 3D noise
texture at a low frequency, and using that to
vary the surface color.

const float freq = 0.17;
float3 noiseVal = noiseTex3D.Sample(

LinearRepeat, wsCoord*freq).xyz;
moss_color.xyz *= 0.9 + 0.1*noiseVal;

© NVIDIA Corporation 2006

Colorization (exaggerated)No colorization

© NVIDIA Corporation 2006

Lighting

3 directional lights, no shadows.
Typical diffuse and phong specular lighting.
To save math, lighting is (dynamically) baked into
two float4_16 cube maps:

Equation Face size
1. Diffuse light cube (N-dot-L) 16x16
2. Specular light cube (R-dot-L)^64 32x32

Lighting influenced by bump vectors & ambient
occlusion values from rock generation process.

© NVIDIA Corporation 2006

Lighting

Diffuse light modulated by occlusion
value as-is.

Specular light falls off more quickly.
Spec is modulated by:

saturate((occlusion – 0.2) / 0.2)

Makes specular highlights fall off very
quickly in recesses.

No ambient occlusion

Occlusion reducing
diffuse light only

Occlusion reducing
diffuse and specular light

© NVIDIA Corporation 2006

Wet Rock

Rock gets wet
when water flows
nearby.

Tiny water ripples
also visible,
flowing down the
rock.

Remove waterfalls
wet rock dries

up over time.

Demo

© NVIDIA Corporation 2006

Wet Rock

Wetness Map, a 3D texture, tracks where
water has been flowing.

½ resolution (48 x 48 x 128)

When shading rock, sample wetness map to
know how wet a pixel should be.

© NVIDIA Corporation 2006

Wet Rock

Making the rock look wet:
1. Darken diffuse color
2. Increase specular reflectivity
3. Perturb normal using 3 octaves of animated

noise.

© NVIDIA Corporation 2006

Animated ‘Wetness’ Noise

Just barely perturbs the normal
…only visible through dancing specular

highlights.
Just add it once (after tri-planar projection)
For each octave:
1. Start with world-space coord (but at varying

scales/swizzles)
2. Add current Time value to .Y – creates downward

flow
3. Sample the noise volume.

Use mipmap bias of +1 (slightly blurry).

© NVIDIA Corporation 2006

Displacement Mapping

Review of Pixel Shader techniques:
Bump Mapping / Normal Mapping plays with the
normal, and hence the light, so geometrically flat
surfaces can appear “wrinkled.”
Parallax Mapping virtually pushes texels
“underneath” the polygon surface, at varying
depths, creating the illusion of parallax as the
camera angle changes.
Pixel Shader Displacement Mapping adds the
ability for texels to occlude each other.

© NVIDIA Corporation 2006

Displacement Mapping

Our displacement technique:

A height map, matched to the color / bump map,
“sinks” texels to various depths below the polygon
surface.
Brute-force ray cast.
Uses simple height map.

(no precomputed cone maps, etc.)
Works with tri-planar texturing.

- Demo -

© NVIDIA Corporation 2006

Displacement Mapping

For each pixel…
For each planar projection…

Start with the original UV coordinates.
Run the displacement algorithm; you end
up with modified UV coordinates (UV’).
Use UV’ for the final color / bump texture
lookups for this projection.

© NVIDIA Corporation 2006

Displacement Mapping

Finding the modified UV coordinates:
March along the eye ray - 10 steps - until
you hit the virtual [sunken] surface.
At each step…
1. get ray depth below surface
2. get UV coord (re-project)
3. sample height map at UV coord
4. first time ray depth exceeds that of sample,

we hit the rock; hang on to those UV coords.

The first 10 steps determine the
inter-texel occlusion silhouette.

Then 5 more refinement steps
further hone the intersection
point and return a more
accurate new UV coord.

© NVIDIA Corporation 2006

Displacement Mapping

float2 dUV = -tsEyeVec.xy * 0.08; //~displm’t depth
float prev_hits = 0;
float hit_h = 0; // THE OUTPUT
for (int it=0; it<10; it++) {

h -= 0.1f;
uv += dUV;
float h_tex = HeightMap.SampleLevel(samp,uv,0).x;
float is_first_hit = saturate(

(h_tex – h - prev_hits)*4999999);
hit_h += is_first_hit * h;
prev_hits += is_first_hit;

}

© NVIDIA Corporation 2006

Displacement Mapping

Dynamic Branching helps immensely
Usually skip 1-2 projections based on the
normal
Skip all 3 if pixel far away!

Not covered here: “basis fix” to make the
displacement extrude in the direction of the
actual polygon face.

16 / 8

10 / 5

7 / 3

4 / 2

© NVIDIA Corporation 2006

Displacement Mapping

Height maps get sampled OFTEN…
Therefore:

Keep separate (don’t pack into color alpha
channel!) for happy caching
Use DXGI_FORMAT_R8_UNORM (mono, 8 bits)
or DXGI_FORMAT_BC4_UNORM (mono, 4 bits).
Photoshop Tips:

Gaussian blur (high frequencies bad)
Hi-pass filter (keeps displacement “happening”)

1) original color map1) original color map 2) green 2) green chch + auto levels+ auto levels

3) HPF @ 163) HPF @ 16 4) HPF @ 44) HPF @ 4

© NVIDIA Corporation 2006

Detail Maps

Detail Maps enhance textures when viewer
very close to surface.

Otherwise we see large, ugly, bilinearly-
interpolated texels.

Just one set of detail textures for the whole
demo.

one color detail texture (~sandy noise)
one bump detail map (~divots, creases).

Color detail map
(256 x 256)

Bump detail map
(1024 x 1024)

© NVIDIA Corporation 2006

Texture Creation

19 rock texture sets

Each has 3 coordinated maps:
Color map (1536x1536, 4 ch)
Bump map (1536x1536, 2 ch)
Displacement height map (1 ch, half-size)

Looks terrible if they don’t match up well…
so height maps (for bump, displacement)
derived from color maps.

Usually from green channel. (?)
High-pass filters (radius ~96 pix)

© NVIDIA Corporation 2006

Texture Creation

Most color maps were made from photos.
Ideally want evenly lit rock surface color…

Morning fog
Or sun perpendicular to rock surface

© NVIDIA Corporation 2006

“1/R” Height Map Filtering

Height maps were run through a special blur kernel
before being used to create bump maps.
Makes resulting bump maps look more organic /
less flat.
Like a gaussian blur, but kernel shape different.

Approximated by weighted sum of 4 gaussians of varying
radii. See slide notes.

Original height
map

Using bump map
created from
original height
map

Using bump map
created from 1/R-
filtered height
map

© NVIDIA Corporation 2006

Water

© NVIDIA Corporation 2006

Water

Demo

© NVIDIA Corporation 2006

Structure

Water is a particle system on the GPU
Dynamically flows over arbitrary rock
Interactive placement by user

Stored in a Vertex Buffer
Each particle is a vertex
Geometry Shader’s variable output allows the number of
particles to rise and fall

© NVIDIA Corporation 2006

Updating the Particles

Water VB is double buffered
Set up one VB as input
Process vertices (particles) in the shader
Stream out updated particles to the other VB
Next frame, swap VB’s

GS

VB_A

VB_B

Geometry Shader allows variable output
A single emitter particle spawns many output particles
Expired particles are discarded in the GS

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Water Particle Types

Five particles types, in three categories
Emitter
Water (two types)
Mist (two types)

Particles of all types are stored in the same VB and
processed by the same GS

Particles can change types
Particles can spawn other types of particles

Dynamic Branching in the shaders enables their
different behaviors

© NVIDIA Corporation 2006

Update: Emitter Particles

In the shader, each input emitter outputs itself plus
several new water particles.

Each waterfall actually has several emitter particles
at the same location

Parallelize the work of creating new water particles
GS performs better with fewer/smaller outputs

© NVIDIA Corporation 2006

Update: Water Particles

Sliding Water
Subject to gravity and sliding friction
Sticks to the rock surface
Changes back to falling water when it goes over an edge

Falling Water
Subject to gravity and air resistance
Handles collisions with rock
Turns into sliding water or mist

© NVIDIA Corporation 2006

Water-Rock Interaction

Rock is fully described by
3D textures

Use density texture to test
for collisions (rock vs. air)

Use surface normal texture
to move the sliding water

© NVIDIA Corporation 2006

Update: Mist Particles

Falling Mist
Created randomly from falling water
Water particles live longer than mist particles

Collision Mist
Created sometimes when falling particles collide with rock

(Both Mist Types)
Move like Falling Water
Cannot change back to being Water

© NVIDIA Corporation 2006

Drawing the Water

Water particles drawn using quads

Sliding water quads are parallel to rock

Falling water and mist face the screen
Smooth transition between sliding and falling

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Billboarding: Obvious Approach

CA

B D

GS

Particles

© NVIDIA Corporation 2006

GS Performance

GS performance improves when output size is small
(either few vertices, or few attributes per vertex)

These vertices have many attributes used for shading
25 floats per vertex * 4 vertices = 100 outputted

In general, it’s better to spread heavy workloads
over many threads to ensure maximum parallelism

Calculating these positions is not trivial
Different particle types
Smooth transitions

© NVIDIA Corporation 2006

A Faster Way

Each particle is duplicated 6
times (enough vertices for two
triangles) by the GS

12 floats per particle * 3 = 36
outputted (max)

In the VS, SV_VertexID%6 is
used to index a Constant Buffer

2 floats per vertex for xy offset
2 floats per vertex for texCoord

The VS moves the vertex to the
billboard’s corner and assigns
its texture coordinate

A B C D E F

AB
D

E F

GS

VS

C

A BF

Particles

GS GS GS

© NVIDIA Corporation 2006

Texturing the Billboards

Every frame, 256 small water drops are
drawn into a small render target

The droplets wiggle around
independently on a sum of different
frequency sine waves

© NVIDIA Corporation 2006

Texturing the Billboards

Falling water uses a small sub-
rectangle of this dynamic
“droplets” texture

Result: Each simulated particle’s
billboard looks like many
independently-moving water
droplets.

Even though they all use the same
texture, every billboard looks
different, because of their unique
sub-rectangle

© NVIDIA Corporation 2006

Texturing the Billboards

Sliding water uses a moving window
over a static texture

Texture wraps seamlessly

X coordinates within the texture differ
between particles

Y coordinates constantly slide
upwards over time

Features of the texture appear to be
flowing faster than the particle is actually
moving
Makes it harder to identify individual
quads with your eye

© NVIDIA Corporation 2006

Specular Highlights

Normal vector needed

Sliding water is parallel to the rock
Surface normal of the rock is modified by a bump map

Falling water quads all face the screen; No normal
Make it up!
Use any old normal map to compute spec
Mask it with the droplets texture as a spec map

© NVIDIA Corporation 2006

Sliding Spec

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Wet Rock

Water particles render
themselves as points to a
3D “wetness” texture

Additive blending sums
many particles’ wetness
contributions

Values sampled from the
wetness texture are used to
shade the rock

© NVIDIA Corporation 2006

Wet Rock Drying

Each frame, large quads are
drawn to each slice of the 3D
wetness texture

Subtractive blending reduces
wetness

An 8 bit UNORM DXGI texture
format offers free clamping of
values to [0,1]

Floats would require double-
buffering with blending and
clamping computed by a
shader

© NVIDIA Corporation 2006

Introducing Variation

Every particle has a unique, fixed number that
influences:

Movement (speed and direction)
Likelihood of turning to mist
Size of billboard
Texture coordinates for drawing

Shaders need a random number generator
Update a seed in a CB from the application every frame
Multiply it by the Vertex_ID before using it

© NVIDIA Corporation 2006

Random Numbers

cbuffer RandomCB {
float randomSeed;

}

void seedRandomNumberGenerator(const float seed) {
// randomSeed is changed by the app
// at the beginning of every frame
randomSeed *= frac(3.14159265358979 * seed);

}

float urand() {
randomSeed = (((7271.2651132 * (randomSeed +
0.12345678945687)) % 671.0) + 1.0) / 671.0;
return randomSeed;

}

© NVIDIA Corporation 2006

Flocking

© NVIDIA Corporation 2006

Dragonflies

Behavior is calculated on the GPU
Including collision avoidance

Each dragonfly is stored as a vertex
Vertex Buffer is double-buffered
Shader updates a dragonfly’s vertex
Results are Streamed Out to other VB

(Just like the water particles!)

© NVIDIA Corporation 2006

Where Are They Going?

Two invisible, moving attractors are
updated by the application every
frame, stored in a CB

Attractors move on a sum of sine
waves
In the shader, each dragonfly is
drawn to the closer of the two
attractors
This is what makes the dragonflies
move together as a flock (or two
flocks)

Random up and down wandering
Each dragonfly has a different
frequency for a sine wave

© NVIDIA Corporation 2006

Look Out For The Rock

Dragonflies are able to sample
the Rock 3D texture to avoid
flying into the rock

The shader tests several
random directions ahead of
the dragonfly for the
existence of rock

Much stronger influence than
the attractors, to allow
sharper turns

© NVIDIA Corporation 2006

Drawing the Dragonflies

Three different models for the
dragonfly (LOD)

Positions and velocities are
read back to the CPU

But double-buffered to avoid a
stall

Distance from camera
determines the LOD for each

Three Instanced draw calls are
made, to draw all LODs

© NVIDIA Corporation 2006

The End.

© NVIDIA Corporation 2006

New Developer Tools at GDC 02007

SDK 10

PerfKit 5 FX Composer 2

GPU-Accelerated
Texture Tools

ShaderPerf 2

Shader Library

	Cascades�by NVIDIA���������Ryan Geiss�Michael Thompson
	Cascades
	Cascades
	Main Topics to Cover
	Rock Generation
	Building the Rock: Overview
	Building the Rock
	Building the Rock
	Building the Rock
	Building the Rock
	Building the Rock
	Building the Rock
	Normals & Occlusion
	Normals & Occlusion
	Normals & Occlusion
	Normals & Occlusion
	Normals & Occlusion
	Generating Polygons
	Generating Polygons
	Generating Polygons
	Generating Polygons
	Generating Polygons
	Generating Polygons
	Marching Cubes Vertex Shader [1]
	Marching Cubes Vertex Shader [2]
	Marching Cubes Vertex Shader
	Marching Cubes Geom. Shader
	Marching Cubes Geom. Shader
	Marching Cubes Geom. Shader
	Floaters
	Floaters
	Shading
	Shading
	Texture Coordinate Woes
	Tri-Planar Texturing
	Tri-planar Texturing
	Blending the 3 together…
	Low-frequency Color Noise
	Lighting
	Lighting
	Wet Rock
	Wet Rock
	Wet Rock
	Animated ‘Wetness’ Noise
	Displacement Mapping
	Displacement Mapping
	Displacement Mapping
	Displacement Mapping
	Displacement Mapping
	Displacement Mapping
	Displacement Mapping
	Detail Maps
	Texture Creation
	Texture Creation
	“1/R” Height Map Filtering
	Water
	Structure
	Updating the Particles
	Water Particle Types
	Update: Emitter Particles
	Update: Water Particles
	Water-Rock Interaction
	Update: Mist Particles
	Drawing the Water
	Billboarding: Obvious Approach
	GS Performance
	A Faster Way
	Texturing the Billboards
	Texturing the Billboards
	Texturing the Billboards
	Specular Highlights
	Sliding Spec
	Wet Rock
	Wet Rock Drying
	Introducing Variation
	Random Numbers
	Flocking
	Dragonflies
	Where Are They Going?
	Look Out For The Rock
	Drawing the Dragonflies
	New Developer Tools at GDC 02007

