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3D projection in milkdrop shader code 
This is a text about how to write 3D shader code in milkdrop. Due to milkdrop’s flat mesh, the 
possibilities are limited so don’t expect you can turn milkdrop into a game engine.  

Basic 3D projection 
 
We see objects in the “real world”, defined in a three-dimensional coordinate system (x,y,z), 
through the two-dimensional screen (uv.x, uv.y). 
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Let the real world x-axis point to the right, the y- axis up, and the z axis forward in viewing 
direction. Any point in the real world would appear on the screen at coordinates 
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This is just basic textbook projection theory, for more details see wikipedia. Actually some quite 
old presets used projection in the waves equations to create 3D cubes or similar. 
Game engines work similarly. A typical scene in a game is made up of thousands of individual 
polygons, normally textured triangles, arranged in “real world” coordinates and then projected to 
the screen. Today’s video cards do most of the job themselves, e.g. project the objects, determine 
hidden surfaces (you don’t want to see the back of a character while he is looking at you), draw the 
textures etc. 

Inverse projection in milkdrop shader code 

How to 
MD is not a game engine. No objects can be defined in the shader sections, and all we can work 
with is the screen space uv, ranging from (0,0) to (1,1), - in pixels e.g. (0,0) to (1280,1024). There is 
no z coordinate. 
The video card will process the complete flat uv space in one go, i.e. within one frame, but it 
processes only this space and no additional objects whatsoever. The shader code is simply executed 
for each pixel in the uv space independantly, period. 
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All you do in the MD shader section must ultimately be based on the uv coordinates.  
 
A simple example: We want to draw a 3D sky in the warp- or comp shader section. The sky will be 
painted as a noise texture so we will end up with something like 
 

float sky = tex2D (sampler_noise_hq, uv2); 
 
“All” we need to do is to determine uv2 as a function of uv. Let’s say we want our sky as a 
horizontal noise texture in the real world space, floating at constant height y = y0, and oriented 
parallel to the x and z-axes as shown below. Of course, any texture is of limited size and will be 
tiled to +/- infinity both in x and in z direction. Looking “through” the screen, the horizon (at z = 
infinity) will appear in the middle. 
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In other words we define the relation between the real world and the sky surface uv2 as follows 
 

xuvx .2=  
yuvz .2=  

.0 constyy ==  
 
Note that the x,y,z coordinates are entirely artificial and have no value in milkdrop. However we 
need them to define our surface. We will get rid of them in a second step by relating them to the 
screen coordinates uv, using the projection laws above. This gives us five conditions in total, from 
which we can now eliminate x,y,z and calculate uv2 as a function of uv. Try this by yourself and you 
will see how the projection laws will now appear in their inverted form. That is what I call inverse 
projection. The result is 
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The according code could look as follows. We subtract 0.5 from uv first for convenience, to achieve 
symmetry around the screen centre rather than the upper left corner. 
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uv -= .5; 
float y0 = .2; 
float z = y0/uv.y; //define a variable z just for convenience 
float2 uv2 = float2 (z*uv.x, z); 
float sky = tex2D (sampler_noise_hq, uv2); 
ret = sky; 

 

 
 
You may be surprised that the sky appears mirrored as “ground”. This is a natural consequence of 
MD always working on the complete uv space and therefore texturing the whole screen. The ground 
is just the solution of the above equations for z > 0, while the sky represents the area where z < 0. If 
you don’t want this symmetry you need to actively mask out the undesired areas e.g. by multiplying 
the sky with a boolean condition  
 

float sky = tex2D (sampler_noise_hq, uv2) * (z <= 0); 
 
Basically we transformed the screen surface uv into a differently shaped or oriented surface, by a 
transformation uv -> uv2, and then mapped1 a texture to this surface using tex2D ( ).  
Normally in MD there is no need to talk about surfaces, because everything is by default mapped to 
the flat screen, i.e. the screen itself is the surface. What we have derived here is a separate surface 
uv2 which is not identical to the screen but floating in an arbitrary “real world”, which itself in MD 
must be expressed by its relation to the uv space, applying the basic projection rules. 
 
Let me reiterate: In a game engine, we would define any “object” in real space coordinates and then 
use the straightforward projection rules to project the object on the screen. In MD shader code, we 
cannot work on a “per object” basis but only on the whole screen. We need to start with the screen 
space uv and calculate backwards to obtain a texture space uv2 which we then use for texture 
mapping.  
 
This inverse projection is cumbersome, hardly intuitive (I still struggle to explain it), and very 
limited. It will work only for a small number of simple geometrical surfaces such as tilted planes, 
spheroids, tubes or cones or similar. If you start playing with more complicated surfaces, you will 
quickly become aware of its limitations. For instance, try to create a ripple structure for the sky, e.g. 
by modulating y0 such that , and you will immediately end up with a system of 
unsolvable transcendental equations of the principal form

)sin(1.010 zy ⋅+=
)sin(xx = . As long as no transcendent 
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1 “sampling“ may be used as a synonym for mapping. In fact tex2D (sampler_noise_hq, uv2) takes “samples” of a 
predefined pattern at all points in the uv2 space. Since uv2 is derived from uv, it contains the same number of points, 
e.g. 1280 x 1024. 
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forms emerge, mathematical software may still find a solution for some rather simple surfaces, but 
chances are high that the result will go over 20 pages. 
 

Notes 

Avoiding Infinity 
Since z reaches infinity in the middle of the screen, the texture will be sampled at very high 
frequency there, causing ugly aliasing artefacts and a high GPU load, particularly when sampling 
the warp shader output sampler_main. Therefore z should be clamped to reasonable values. The 
new artefacts caused by the limiter can be hidden by some form of interpolation with a solid color, 
creating an impression of distant fog or darkness. Example: 
 

uv -= .5; 
float y0 = .2; 
float z = clamp (y0 / uv.y, -4, 4); 
float2 uv2 = float2 (uv.x*z, z); 
float sky = tex2D (sampler_noise_hq, uv2); 
ret = lerp (0, sky, saturate(1/pow(z,2)) ); 

 

Avoiding Repetitiveness 
Towards the middle of the screen, where z takes high values, the texture will be tiled to the screen 
in very small intervals (sampled at high frequency), and its repetitiveness may become annoyingly 
apparent. There is not much you can do about that if you use the warp shader output sampler_main, 
or an image as texture. For noise textures, a practical way to alleviate this problem is to sample the 
texture map a few times at different frequencies. Instead of 
 

tex2D (sampler_noise_hq, uv2) 
 
use e.g. 
 

0.875 * (tex2D (sampler_noise_hq, uv2/4) + tex2D (sampler_noise_hq, 
uv2/2)/2 + tex2D (sampler_noise_hq, uv2)/4) 

 
or similar. This will however use up more GPU power. 

Movement and rotation 
We discriminate between two cases of movement: 

a) related to the whole scene (the surface) 
b) related to the texture mapping only 

 
For case a), which could for instance be a rotation of the whole scene around the z-axis, the 
movement equations apply to the uv coordinates. If you implement your 3D code in the warp 
shader section, you can effectively use the built-in transformations such as rot to rotate the whole 
scene and sy to shift the horizon up and down. Note that MD uses different uv coordinates for the 
warp and comp shader: uv in the warp shader is affected by rot, warp, zoom etc. while uv in the 
comp shader is not. Therefore if you implement your code in the warp shader, you should make use 
of the MD internal transformations, they are based on the vertex mesh and faster and more efficient 
than in the shader directly. However if you need to implement your code in the comp shader, e.g. 
because you want to use the warp shader output as texture, you will have to write your own code 
such as 
 

uv -= -5.: 
float angle = 0.3; 
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uv = mul (uv, float2x2(cos(angle), sin(angle), -sin(angle), cos(angle)); 
etc. 

 
Note that the sines and cosines need only be calculated once per frame so please do not put them 
into the shader code but move them to the frames equations section. The mul operation needs to 
remain in the shader of course because it will be applied to each pixel individually. 
 
Case b), movement of texture only, leaves the surface alone and only shifts the texture along the 
surface. This can be used e.g. to create an illusion of moving forward or sidewards within the scene, 
and is applied to uv2 only. For a movement towards the screen, use e.g. 
 

float2 uv2 = float2 (uv.x*z, z + time); 

Overcoming the “flat” appearance 
Regardless which surface you define to map your texture to, there will always be a general 
impression of flatness. The sky does not appear like clouds but rather like a slide projected onto a 
flat surface, because, well, it is just a pattern wallpapered to a surface. 
 
To overcome this, the texture should be correlated to the surface: Dark areas in the sky should 
appear at another height y0 than bright areas, same as in the real world. If you look over a field, 
you’ll see lumps of soil and stones of different colours, texturing the field and forming its surface. 
This is what we try next. 

Generating profiled 3D surfaces 
As said above, the inverse projection problem can only be solved for trivial surfaces, described by a 
function in real world coordinates which is at least invertible. Invertibility is necessary but not 
sufficient for a closed solution, as seen for the sine function, which is invertible, but still leads to 
unsolvable equations. 
 
When we now try to make the surface dependant of its texture, we have the problem that a noise 
texture is not invertible in the first place.  
A texture is defined by color = function (uv) = tex2D (sampler_noise_hq, uv), while the inverse 
would be uv = function-1 (color) which apparently has no unique solution. Rather there will be 
many points in the uv space for which the texture will yield a given color. Nevertheless there is a 
trick to bypass this problem. 
 
Resuming the sky example above, to make the clouds more realistic, we want the height of the sky 
be modulated with the noise texture. It would sound reasonable to simply add the sky texture to the 
height y0. However we need the sky texture sampled in uv2 space before we can add it to y0. But we 
don’t have it, we must first calculate uv2, which itself is based on y0. The trick to break the circle is 
to take an iterative approach: calculate the sky as above with constant y0, then add (a small fraction 
of) the resulting sky texture to y0, then go back and recalculate the sky with the new y0 etc.  
 
In the sample code below, I start with the code above but append a loop which does four iterations. 
Two to four iterations should normally be sufficient. Do not exaggerate as too much iteration will 
slow your code down. 
 
The variable depth determines the fraction of sky texture to be added to y0. The value should be 
quite small; otherwise you will get ugly distortions, simply because the whole approach is only an 
approximation and not an exact solution of the inverse projection.  
 
It is a good idea to sprinkle a bit of low quality, high frequency noise such as sampler_noise_lq in 
the end, to improve the impression of the structured profile. 
 



uv -= .5; 
float y0 = .2; 
float z = y0/uv.y; 
float2 uv2 = float2 (z*uv.x, z); 
float sky = tex2D (sampler_noise_hq, uv2); 
 
float depth = .006; 
for (int n = 1; n <= 4; n++)  
{ 
  y0 += depth*sky; //alternatively y0 *= 1+depth*sky; 
  z = y0/uv.y; 
  uv2 = float2 (z*uv.x, z); 
  sky = tex2D (sampler_noise_hq, uv2); 
} 
 
sky *= 1-.5*tex2D (sampler_noise_lq,uv2); 
ret = sky; 

 
And here is the result. The sky does not really look like clouds as originally intended but that is just 
a matter of colouring and fine tuning.  
 

 
 

The code may require some refinement in practice, e.g. you may find it appropriate to scale depth 
with z to avoid excessive distortions towards the horizon.  
 
The same scheme can of course be equally applied to other surfaces / textures. Interesting effects 
can be achieved using the warp shader output sampler_main, or non-smoothed noise textures such 
as sampler_pw_noise_lq. 
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